

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

tablesorter

###Flexible client-side table sorting
####Getting started

To use the tablesorter plugin, include the jQuery library and the tablesorter plugin inside the head-tag of your HTML document:

`html
<script type="text/javascript" src="/path/to/jquery-latest.js"></script>
<script type="text/javascript" src="/path/to/jquery.tablesorter.js"></script>
`

Tablesorter works on all standard HTML tables. You must include THEAD and TBODY tags:

```html
<table id=”myTable” class=”tablesorter”>
<thead>
<tr>


<th>Last Name</th>
<th>First Name</th>
<th>Email</th>
<th>Due</th>
<th>Web Site</th>




</tr>
</thead>
<tbody>
<tr>


<td>Smith</td>
<td>John</td>
<td>jsmith@gmail.com</td>
<td>$50.00</td>
<td>http://www.jsmith.com</td>




</tr>
<tr>


<td>Bach</td>
<td>Frank</td>
<td>fbach@yahoo.com</td>
<td>$50.00</td>
<td>http://www.frank.com</td>




</tr>
<tr>


<td>Doe</td>
<td>Jason</td>
<td>jdoe@hotmail.com</td>
<td>$100.00</td>
<td>http://www.jdoe.com</td>




</tr>
<tr>


<td>Conway</td>
<td>Tim</td>
<td>tconway@earthlink.net</td>
<td>$50.00</td>
<td>http://www.timconway.com</td>




</tr>
</tbody>
</table>
```

Start by telling tablesorter to sort your table when the document is loaded:

```javascript
$(document).ready(function()



	{
	$(“#myTable”).tablesorter();





}





);

Click on the headers and you’ll see that your table is now sortable! You can also pass in configuration options when you initialize the table. This tells tablesorter to sort on the first and second column in ascending order.

```javascript
$(document).ready(function()

	{
	$(“#myTable”).tablesorter({sortList: [[0,0], [1,0]]});

}

);

For DateTime columns you can specify your format, like this:

```javascript
$(document).ready(function()



	{
	$(“#myTable”).tablesorter( {dateFormat: ‘pt’} );





}






);

The available ones (currently) are: us, pt and uk. (for pt you can use ‘dd/MM/yyyy hh:mm:ss’)





            

          

      

      

    

  

    
      
          
            
  # django-remote-forms

A package that allows you to serialize django forms, including fields and widgets into Python
dictionary for easy conversion into JSON and expose over API

Please go through my [djangocon US 2012 talk](http://www.slideshare.net/tarequeh/django-forms-in-a-web-api-world)
to understand the problem sphere, motivations, challenges and implementation of Remote Forms

## Sample Implementation

If you don’t mind digging around a little bit to learn about different the components that might be
necessary for an implementation of django-remote-forms, check out
django Remote Admin [django-remote-admin](https://github.com/tarequeh/django-remote-admin)

## Usage

### Minimal Example

```python
from django_remote_forms.forms import RemoteForm

form = LoginForm()
remote_form = RemoteForm(form)
remote_form_dict = remote_form.as_dict()
```

Upon converting the dictionary into JSON, it looks like this:

```json
{

“is_bound”: false,
“non_field_errors”: [],
“errors”: {},
“title”: “LoginForm”,
“fields”: {

	“username”: {
	“title”: “CharField”,
“required”: true,
“label”: “Username”,
“initial”: null,
“help_text”: “This is your django username”,
“error_messages”: {

“required”: “This field is required.”,
“invalid”: “Enter a valid value.”

},
“widget”: {

“title”: “TextInput”,
“is_hidden”: false,
“needs_multipart_form”: false,
“is_localized”: false,
“is_required”: true,
“attrs”: {

“maxlength”: “30”

},
“input_type”: “text”

},
“min_length”: 6,
“max_length”: 30

},
“password”: {

“title”: “CharField”,
“required”: true,
“label”: “Password”,
“initial”: null,
“help_text”: “”,
“error_messages”: {

“required”: “This field is required.”,
“invalid”: “Enter a valid value.”

},
“widget”: {

“title”: “PasswordInput”,
“is_hidden”: false,
“needs_multipart_form”: false,
“is_localized”: false,
“is_required”: true,
“attrs”: {

“maxlength”: “128”

},
“input_type”: “password”

},
“min_length”: 6,
“max_length”: 128

}

},
“label_suffix”: “:”,
“prefix”: null,
“csrfmiddlewaretoken”: “2M3MDgfzBmkmBrJ9U0MuYUdy8vgeCCgw”,
“data”: {

“username”: null,
“password”: null

}

}

An API endpoint serving remote forms

```python
from django.core.serializers.json import simplejson as json, DjangoJSONEncoder
from django.http import HttpResponse
from django.middleware.csrf import CsrfViewMiddleware
from django.views.decorators.csrf import csrf_exempt

from django_remote_forms.forms import RemoteForm

from my_awesome_project.forms import MyAwesomeForm

@csrf_exempt
def my_ajax_view(request):


csrf_middleware = CsrfViewMiddleware()

response_data = {}
if request.method == ‘GET’:


# Get form definition
form = MyAwesomeForm()





	elif request.raw_post_data:
	request.POST = json.loads(request.raw_post_data)
# Process request for CSRF
csrf_middleware.process_view(request, None, None, None)
form_data = request.POST.get(‘data’, {})
form = MyAwesomeForm(form_data)
if form.is_valid():


form.save()








remote_form = RemoteForm(form)
# Errors in response_data[‘non_field_errors’] and response_data[‘errors’]
response_data.update(remote_form.as_dict())


	response = HttpResponse(
	json.dumps(response_data, cls=DjangoJSONEncoder),
mimetype=”application/json”





)

# Process response for CSRF
csrf_middleware.process_response(request, response)
return response




```

djangocon Proposal

This is a bit lengthy. But if you want to know more about my motivations behind developing django-remote-forms
then read on.

>In our quest to modularize the architecture of web applications, we create self-containing backend
>systems that provide web APIs for programmatic interactions. This gives us the flexibility to
>separate different system components. A system with multiple backend components e.g. user profile
>engine, content engine, community engine, analytics engine may have a single frontend application
>that fetches data from all of these components using respective web APIs.

>With the increased availability of powerful JavaScript frameworks, such frontend applications are
>often purely JS based to decrease application footprint, increase deployment flexibility and
>separate presentation from data. The separation is very rewarding from a software engineering
>standpoint but imposes several limitations on system design. Using django to construct the API for
>arbitrary consumers comes with the limitation of not being able to utilize the powerful django form
>subsystem to drive forms on these consumers. But is there a way to overcome this restriction?

>This is not a trivial problem to solve and there are only a few assumptions we can make about the
>web API consumer. It can be a native mobile or desktop - application or browser. We advocate that
>web APIs should provide sufficient information about ‘forms’ so that they can be faithfully
>reproduced at the consumer end.

>Even in a API backend built using django, forms are essential for accepting, filtering, processing
>and saving data. The django form subsystem provides many useful features to accomplish these tasks.
>At the same time it facilitates the process of rendering the form elements in a browser
>environment. The concepts of form fields combined with widgets can go a long way in streamlining
>the interface to interact with data.

>We propose an architecture to serialize information about django forms (to JSON) in a framework
>independent fashion so that it can be consumed by any frontend application that renders HTML. Such
>information includes but is not limited to basic form configurations, security tokens (if
>necessary), rendering metadata and error handling instructions. We lovingly name this architecture
>django-remote-forms.

>At WiserTogether, we are in the process of building a component based architecture that strictly
>provides data endpoints for frontend applications to consume. We are working towards developing
>our frontend application for web browsers using backbone.js as MVC and handlebars as the templating
>engine. django-remote-forms helps us streamline our data input interface with the django forms
>living at the API backend.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

